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We discuss the topological analysis of dynamical systems represented by two-dimensional maps emphasiz-
ing the case of Poincare´ maps. The central result consists in the implementation of a recent presentation of
braids as deformations of circles@M. A. Natiello and H. G. Solari, J. Knot Theory Ramifications3, 511~1994!#
to the determination of braid types associated with periodic orbits~up to a global torsion!. Since some braids
imply positive topological entropy, the topological analysis can be regarded as a test of chaos. The method is
specially suited for experiments where the complete reconstruction of the phase space for the flow cannot be
achieved at a reasonable cost. We apply these ideas to data sets produced in a laser physics experiment for
which the reconstruction of the phase space of the flow is nearly impossible.@S1063-651X~96!03309-0#

PACS number~s!: 05.45.b1, 42.65.Sf, 47.20.Ky

I. INTRODUCTION

The computation of the periodic orbits which are present
in an experimental data set is a central tool in assessing the
topological behavior of the system. In the case of three-
dimensional~3D! systems, periodic orbit organization can be
turned into a strong tool for the analysis of data. First, the
presence of certain periodic orbits implies that the associated
~2D! Poincare´ map has positive topological entropy@1#, thus
being a relatively simple and certain test for chaos@2#. Sec-
ond, the linking between periodic orbits and the way they
rotate around each other along the flow, characterized by the
linking number @3# and the relative rotation rate@4#, are
strong indicators of the organization of the flow, since as
long as two periodic orbits exist~i.e., for values of the sys-
tem parameters away from bifurcations affecting these or-
bits! their linking will be invariant. Small errors in the deter-
mination of the orbits will not alter their relative linking.

These indicators can be summarized in a template@5#. A
template is a branched manifold containing information
about the periodic orbits present in the attractor of the system
together with their relative linking and rotation rates. The
experimental data can provide only a finite number of peri-
odic orbits and a template can be induced from them using
the linking and folding information of the orbits@6#. The
periodic orbits present in the system might be different from
those present in the induced template in two ways. First,
there might be orbits in the template that are not present in
the system. Second, there might be orbits in the system not
present in the template since the data set may lack informa-
tion about periodic orbits from some regions of the phase
space not visited by the attractor. The induced template is an
educated guess~conjecture! about the behavior of the sys-
tem; its appeal comes from the ability of organizing the in-
formation in a simple, integrated, form.

When a flow can be imbedded in three-dimensions and in
addition it admits a Poincare´ section, its periodic orbits are
described by their braid type@7#. The existence of a Poincare´
control section imposes strong restrictions to the flow. Con-
tinuity and differentiability of the flow reflect themselves in

the continuity and differentiability of the Poincare´ first-return
map. Moreover, most properties of the flow, including the
above mentioned linking numbers, relative rotation rates, and
topological entropy, are coded in the braid type and can be
read directly on the Poincare´ section.

The topological organization of the periodic orbits can be
used as a test for theoretical models. Any acceptable model
will have to present the same topological organization of the
periodic orbits as the observed data. It can be shown@8# that
the maps of the disk preserving a~set of! periodic orbit~s!
can be classified, allowing for change of coordinates and
deformations, by the braid type of the orbit~s!. This is to say
that the necessary condition for a theoretical Poincare´ map of
the disk to be acceptable as a model for a data set is to have
the same braid types as the data set for the periodic orbits
‘‘present’’ in the data.

Until now, all computations of periodic orbits required a
good reconstruction of the flow. This reconstruction is not
always possible in practice, as in the motivating example of
this work which is a laser with saturable absorber. Our time-
series is a recording of the intensity of the laser. When the
intensity drops very close to or below the detection thresh-
old, the experimental error renders it very difficult and even
impossible to reconstruct the flow in that region of phase
space. This difficulty calls for finding new ways to charac-
terize periodic orbits which do not need to imbed the data set
in order to produce a model flow.

In a previous article@9# we proved that the braid type
associated to periodic orbits in 3D flows can be determined
directly from the Poincare´ section. This is particularly ap-
pealing from the applications point of view because it sug-
gests that the efforts in modeling experimental data can be
focused in the Poincare´ section rather than in the flow. Once
one has established by some means that a data set could be
imbedded in three dimensions, it suffices to have a good
description of the Poincare´ map in order to understand the
topological organization of the periodic orbits hidden in the
data. One does not actually need to perform the imbedding.
In this way, the difficulties encountered with our motivating
example led to the development of alternative and more

PHYSICAL REVIEW E OCTOBER 1996VOLUME 54, NUMBER 4

541063-651X/96/54~4!/3185~11!/$10.00 3185 © 1996 The American Physical Society



powerful mathematical tools to analyze 3D flows admitting a
Poincare´ section.

In this paper we review the theory associated with deter-
mining braid types associated with periodic orbits on the
Poincare´ section in Sec. II. The reader may want to move
directly to Sec. III, where we discuss a method to model the
Poincare´ first-return map and to analyze periodic orbits, and
use Sec. II as a reference section. In Sec. IV we present an
application to the laser system. Conclusions and future views
are in Sec. V.

II. THEORETICAL BACKGROUND

Using the parametrization in time we can regard periodic
orbits in 3D flows as smooth closed nonintersecting curves in
3-space. They can be described by their knot type@10#, or
more interestingly by a braid@11#, using explicitly the addi-
tional orbit invariant induced by the existence of a Poincare´
section, namely the period. In this section we will discuss
why periodic orbits are interesting to understand the topo-
logical organization of a flow, what is the braid group, how it
is related to periodic orbits, and how to compute the braid
information of a periodic orbit directly from the Poincare´
section.

A. Why periodic orbits?

Our ultimate goal is to assess if a given data set is ‘‘cha-
otic,’’ i.e., if it arises from a dynamical system running in the
chaotic regime. By ‘‘chaotic’’ we mean a system having
positive topological entropy@2#.

Topological entropy, intuitively, measures the way a flow
stretches and folds into itself by way of the time evolution. A
minimal physical requirement is that the time evolution
should be continuous and with continuous inverse. In the
specific case of this paper~3D flows admitting a Poincare´
section! this translates into having a Poincare´ map which is
continuous and with continuous inverse~i.e., a homeomor-
phism!.

The role of periodic orbits in this game is the following. If
one happens to establish that a particular periodic orbit is
present in a data set, and therefore infer that this orbit is a
possible solution of the underlying dynamical system, the
rate of stretching and folding of the flow has to be compat-
ible with the existence of this orbit, because of the continuity
assumptions. Intuitively, if one has certain very twisted or-
bits, the whole flow has to be highly twisted. We conclude
that the existence of certain periodic orbits will imply posi-
tive entropy and hence chaoticity. A more precise statement
in terms of the braid associated to a periodic orbit is given
below.

B. Periodic orbits and braids

Consider a period-n orbit on a 3D flow. Its intersection
with the Poincare´ section will consist ofn different points on
the 2D Poincare´ surface. For the sake of simplicity we can
consider this surface to be a topological disk inR2. A period-
3 orbit is depicted in Fig. 1~A!, where the intersection of the
orbit with the Poincare´ section is indicated with black dots.

In order to describe the orbit we can consider the evolu-
tion of all n points simultaneously during one period starting

and finishing on the chosen Poincare´ surface. Each point will
develop a ‘‘thread’’ along the evolution, arriving finally to
some other point~among then points of the orbit!. We illus-
trate this description in Fig. 1~B!.

More precisely, the threads can be parametrized by a
function f :@0,1#°(R2)n, where f (t) consists ofn different
points of the disk describing the location of the threads at
time t. It is clear from Fig. 1 thatf (1) is just a permutation
of f (0) since we can take them to be the same set of points
on the same control section. Moreover, since the orbit cannot
intersect itself, no two entries inf (t) can coincide, so we can
more accurately replace the image space byXn5(R2)n2D,
whereD is the great diagonal in (R2)n, i.e., (x1 , . . . ,xn)
PD⇔xi5xj for someiÞ j . We end up describing the orbits
by functions f :@0,1#°Xn , where f (0) is a permutation of
f (1) andn characterizes the period. Since the labeling of the
initial points (x1 , . . . ,xn) is arbitrary we should not distin-
guish the function (x1 , . . . ,xn)(t) from (xp1, . . . ,xpn),

wheren°pn is a permutation. This is achieved identifying
the points (x1 , . . . ,xn) and (xp1, . . . ,xpn) for all possible

permutations, i.e., the spaceXn is further replaced by
Xn /Sn , whereSn stands for the permutation group ofn ele-
ments.

In order to characterize the way an orbit tangles to itself
we have to gain independence with respect to changes of
coordinates that would only change the appearance of the
orbit. Moreover, if we are to make sense of statements such
as ‘‘the orbit exists in the parameter region. . . ’’ we have to
allow for continuous deformations of the orbits. Hence it
makes sense to classify orbits up to homotopies.~Two maps
f ,g:A→B are said to be homotopic if they can be continu-
ously deformed into one another@12#.!

We can then consider the equivalence classes with respect
to homotopies of the functionsf :@0,1#°Xn /Sn , where now
f (1)5 f (0) since we have identified points inXn that differ
in a permutation. Each orbit will belong to one and only one
equivalence class, so the classes are representative of the

FIG. 1. ~A! A period-3 orbit. The black dots denote the inter-
section of the orbit with a control section.~B! The braid represen-
tative of the orbit.

3186 54SOLARI, NATIELLO, AND VÁZQUEZ



orbit structure. These classes are the elements of thebraid
group Bn , @13# also called the fundamental group
p1(Xn /Sn).

C. Braids

Figure 1~B! is a pictorial representation of a braid. We
can define a braid multiplication as is shown pictorially in
Fig. 2, simply by appending one braid to the other.

Braids can be described enumerating the crossings among
the n threads. Each elementary crossing is called a~free
group! generators i @13#. Consecutive threads can cross in
two possible ways. Conventionally we calls i the crossing
where threadi goesover thread i11. The generators i

21

describes the alternative possibility (i11 over i ). It is clear
thats i

21 is the inverse ofs i with respect to the multiplica-
tion defined above. Just by ‘‘pulling tight’’ the involved
threads one sees thats is i

2151. This pictorial description of
braid multiplication and inverse generators may convince the
reader that braids actually form a group. A rigorous demon-
stration can be found in@13#.

Enumerating the minimal number of necessary generators
in their order of appearance, each braid has an associated
braid word. The braids of Fig. 2 have the words
A5s2

21s1, B5s2s1, andC5s2s1s2
21s1, where we agree

on writing the generators from right to left~hence, the top
crossing is at the right end of the word!. With this conven-
tion, group multiplication amounts to formal multiplication
of the braid words, i.e.,C5BA.

Note that although it can be useful to retain the identity of
a thread all along the braid, the numbering of the generators
in the braid word assumes that after each crossing the threads
are renumbered starting from the left.

We note that the generators of the braid group satisfy two
constitutive relations, namelys is i11s i5s i11s is i11 and
s is j5s js i whenu i2 j u.1. These relations also have a nice
interpretation in terms of thread-diagrams and ‘‘pulling
tight’’ as above.

D. Braid conjugation

Concerning the relation between braids and periodic or-
bits, it is apparent that the choice of Poincare´ section can
alter the associated braid word. Choosing the section
‘‘ahead’’ in the direction of the flow, the crossings that were
originally at the beginning of the word~occurring first in the

direction of the flow! will be moved to the end of the word.
Hence, the same orbit can be described by different words.
We show an example in Fig. 3. The different words are re-
lated by a conjugation operation,

RWb5bLW , RW5bLWb
21, ~1!

whereLW , RW describe the words associated to the conju-
gated braids, with the convention that all terms of the form
s i

21s i can be canceled out of a braid word. In the case of
Fig. 3, LW , RW indicate the left and right braids, respec-
tively, andb5s1 .

In general we can say that braid words related by a con-
jugation convey the same information. Moreover, it can be
shown that conjugation is an equivalence relation, and hence
it is preferable from the periodic-orbit viewpoint to work
directly with the equivalence classes of braids with respect to
conjugation.

E. Braids in the Poincaré section

Braids can be described graphically directly on the Poin-
carésection, without resorting to the flow in order to ‘‘read’’
the crossings of the threads@9#. In this subsection, we will
sketch the procedure for attaining this description.

There is one piece of information from the periodic orbits
that is lost when going to the Poincare´ surface. In fact, the
association between flows and Poincare´ first-return maps is
many-to-one. If the flow as a whole has a global torsion~i.e.,
it rotates as a whole around the flowing axis! which is an
integer number times 2p, the first-return map remains unal-
tered. We will call these integer rotations afull torsion or a
full twist. A flow compatible with a Poincare´ map is called a
suspension. A given Poincare´ map admits many suspensions
which differ from each other in the number of full twists.

The full twists constitute a subgroupZn of the braid group
Bn . They are in fact thecenter of this group, i.e., those
elements that commute with all elements ofBn @9#. Hence
the quotient groupBn /Zn is the relevant entity to character-
ize periodic orbits of any flow having a given first-return
map. We will in the sequel refer only to this quotient group.

FIG. 2. A pictorial representation of the multiplication operation
of the braid group.

FIG. 3. Braid conjugation. The first crossing on the left picture
goes into the last crossing on the right picture. The direction of the
flow is downwards.

54 3187BRAIDS ON THE POINCARÉSECTION; A LASER EXAMPLE



Consider then periodic points on a Poincare´ section cor-
responding to a periodic orbit of a flow. We considern.1 in
the sequel. Draw a topological circle joining the points of the
orbit with arcs on the Poincare´ section. There are many ways
to produce a circle connecting nonintersecting arcs among
the points. One can classify all these ways by homotopy
classes. Two circles are equivalent if they can be deformed
into each other without moving the periodic points. The dif-
ferent equivalence classes label the inequivalent ways of
constructing circles. In Fig. 4 we show two inequivalent
circles on a period-4 orbit.

How are these circles related to periodic orbits? Choose
one circle as a starting point. This includes choosing an or-
dering of the periodic points along the circle. Now ‘‘slide’’
the circle along the flow until it returns to the control section
as described in Fig. 5. It is reasonable to expect that the
transformed circle will contain some information related to
the braid of the orbit.

The relevant result@9# is that the equivalence classes of
circles is in one-to-one correspondence with the quotient
group between the braid group and the full torsions.

Hence, we can obtain a representation of the braid gen-
eratorss i and further of the braids directly on the Poincare´
surface. Taking Fig. 4~a! to represent the starting point~and
hence the identity braid!, Fig. 4~b! represents the generator
s2. This generator can be conceived as a ‘‘turn’’ where one
takes two periodic points on the Poincare´ surface and
switches them clockwise, together with the arc joining the
points. Inverse generators are represented by counterclock-
wise turns.

Using this method, the braid of a periodic orbit can be
read directly on the Poincare´ section. The whole recipe is
summarized in Fig. 5. First, draw a circle joining the points
of the orbit in a given sequence. The image of this circle by
the Poincare´ map will be a twisted circle inequivalent~in
general! to the original one. A representative of the braid of
the orbit can be obtained by reading the turns required to

deform the original circle into the final one.

F. Braid type

If we are not going to privilege one suspension of the map
in front of another, or one Poincare´ section in front of an
equivalent one, we will have to identify several braids with
the same orbit. Two braids will be considered equivalent, say
b[a, in the sense that they possibly label the same periodic
orbit, if they differ by a number of full twists or a conjuga-
tion,

g21bzmg5g21bgzm5a, ~2!

wherez5(s1s2•••sp21)
p is the braid representative of a

full twist of the braids withp strands.
It is straightforward to verify that we have defined an

equivalence relation which classifies the braids into different
inequivalent classes. Thebraid types are precisely these
classes, i.e., two braids have the same braid type if they are
related by a conjugation and a number,m, of full twists.

Let us review now the form in which we associate a braid
with the periodic orbit~s! of a map. First, we draw a circle
connecting all the periodic points of the periodic orbits~s!
being considered and take the image by the map of the circle
obtaining a new one~inequivalent to the original in general!.
We then read off the name of the braid in terms of the gen-
erators of the braid group that need to be applied to deform
the original circle~we shall call it the identity! into its image.

There is clearly one degree of arbitrariness in this proce-
dure: the choice of original circle is absolutely arbitrary.
What would happen if we pick a different~inequivalent!
identity? What does thei actually mean ins i ?

The generators i exchanges thei and i11 points along
the original circle. Changing the circle is then equivalent to
giving a different meaning to the generator. Consider two
different choices of circlesC1 andC2; let a be the braid that
acting onC1 producesC2 and letb i be the braid associated
to the map as is read from the action of the map onCi . We
would like to know the relation betweenb1 andb2.

If we call s i the generators as read withC1 andS i as read
with C2, we find thatS i5as ia

21. That is, we first putC2
in the form ofC1, next exchangei and i11 applyings i ,
and finally send backC1 to C2. It follows immediately that
any product ofS ’s is transformed in the same form, thus
b25ab1a

21. The conclusion is that the choice of original
circle does not affect the braid type. This reasoning is illus-
trated in Fig. 6.

FIG. 4. Braids on the Poincare´ surface: Two circles belonging to
different homotopy classes.

FIG. 5. Braids on the Poincare´ surface: The image of the start-
ing circle by the Poincare´ map.

FIG. 6. Braids on the Poincare´ surface: A different starting
circle gives a conjugate braid.
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Now consider two choices of Poincare´ section,P1 and
P2, such that the second lies ahead of the first along the
flow. The action of the flow on the identityC1 of the first
section is the circleb1C1. While going fromP1 to P2, the
identity deforms toC25dC1. Let us takeC2 as the identity
on P2. The action of the flow onC2 can be described by
db1d

21C2. Pictorially, we flow backwards fromC2 on P2
to d21C25C1 on P1. We act with the flow, returning to
b1d

21C2 on P1, and finally we flow forward again toP2.
Figure 3 was prepared having this example in mind.

Notice the parallel between the two situations described
above. In both cases, the conclusion is that changing the
arbitrarily chosen ‘‘identity’’ circle the Poincare´ map gener-
ates conjugated braid names, hence we read exactly the same
braid type.

G. Braids in higher dimensions

The essential geometric property that is underlying the
structure of periodic orbits of 2D maps is the fact that the
fundamental group of the punctured disk (D22$0%, i.e., the
disk without one of its interior points! is nontrivial. In sim-
pler words, closed curves can be distinguished by their
~signed! number of turns around the puncture. Curves having
a different number of turns cannot be deformed continuously
into one another. Similarly, the braids ofn strands are related
to the fundamental group of the disk withn punctures.

Going over to higher dimensions the fundamental groups
become trivial. A famous consequence of this is the fact that
all knots are trivial in four or more dimensions.

This result is of a fundamental nature in the sense that
general physical systems are described by partial differential
equations. Regarded as ODE’s~ordinary differential equa-
tions!, physical systems should be of very high and often
infinite dimension. How then is it possible that fromexperi-
mental resultsoriginated in a high-dimensional system one
obtains linked periodic orbits, an object which is character-
istic of 3D flows? There is a simple answer to this question
when low-dimensional models can be regarded as the center
manifold reduction of high-dimensional physical systems.

A dynamical system admitting a Poincare´ section of di-
mension k.2 can in certain cases still be associated to
braids@9#. The condition is that the Poincare´ map hask22
strongly contracting directions, i.e., that its dynamics can be
essentially described by a 2D map, namely the map on the
2D center manifold, irrespective of the dimensionk11.3
of the original flow. The fundamental group of the periodic
orbits of the whole system dressed with their strongly stable
directions equals the fundamental group of the periodic or-
bits on the center manifold, i.e., the braid types. Proof of
these results can be found in@9#.

H. Braids that imply positive entropy

An important result of Boyland@1# states that forirreduc-
ible braid types there is a simple test for positive topological
entropy. Following Katok@2# positive topological entropy is
a way of assessing that the system ischaotic. Let us recall
the procedure step by step.

An irreducible braid type can be intuitively described as
one that cannot be decomposed in smaller independent sub-
sets. In particular, ann-threaded braid describing a period-

n orbit with n a prime number is always irreducible@1#. We
will focus further on this particular case.

The existence of certain orbits in 2D diffeomorphisms
requires a high degree of stretching and folding of the do-
main. In particular, the existence of apseudo-Anosovorbit
@1# implies the existence of infinitely many other orbits and
of positive topological entropy.

A test for positive topological entropy is, hence, to deter-
mine if a system has a periodic orbit with a braid of pseudo-
Anosov type. The result by Boyland states that if a braid is
irreducible, then the exponent-sum, i.e., the sum of the ex-
ponents of the generators associated to the braid word, can
be used as a test for entropy. If the exponent sum is not an
integer multiple ofn21, the braid is pseudo-Anosov. In the
negative case there is still a chance. Ifbn, i.e., thenth power
of the braid, is not homotopic to a rotation, then the braid
b is of pseudo-Anosov type.

III. THE METHOD

As mentioned in the Introduction, the motivating example
of this work is time-series from a laser system. When the
intensity recorded in the time-series drops to values very
close to or below the detection threshold, the experimental
error renders it very difficult and even impossible to properly
reconstruct the flow in that region of phase space. One way
out of the problem, then, is to give up the reconstruction of
the flow and attempt to reconstruct the Poincare´ map instead.

A sample of a time-series is shown in Fig. 7 showing that
there are large periods of zero or very low intensity in be-
tween high-intensity peaks. Our main working hypothesis is
that each peak can be regarded as a point on a Poincare´
surface of the system, and hence the time-series records how
the system jumps from one peak to the next, i.e., how it
moves on the Poincare´ surface, as dictated by the Poincare´
map.

To describe each peak we would like to use as much
information as possible from the part of the time-series well
above the detection threshold, while avoiding as much as
possible the ‘‘dead times’’ between consecutive peaks. If the
description is successful, we will have a good model of the
Poincare´ map instead of a poorer model of the original flow.

A. Peak description

To identify each peak we considern consecutive points of
the time-series~in our computationsn55) to determine
whether there is a local maximum among those points. A
cutoff valuec disregards maxima which have too low abso-
lute intensity. The peak is further represented byp points to
each side of the local maximum. The amount of pointsp was
taken as one-half of the largest interpeak distance after ig-
noring the ‘‘zero intensity’’ segments of the data~i.e., where
the intensity drops below a threshold valuet, so that it can be
assumed to have reached ‘‘zero level’’!. This choice ofp
guarantees that all data points above ‘‘zero intensity’’ will
participate in the identification of the peaks~eventually with
some overlap!. The sampling interval was taken identical to
the experimental sampling. However, sampled points were
interpolated so that the peaks coincide with thep11 sample
avoiding in this form adding one spurious dimension to the
reconstructed data. Both the threshold and the cutoff were
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chosen a few percent above the absolute minimum of the
time-series. Typical values werep;20,c;3%, t;0.5%. In
order to have a more confident characterization of each peak
we used a (2p12)-dimensional array where apart from the
2p11 consecutive points of the time series we added a ‘‘co-
ordinate’’ containing the interpeak distance, which can be
regarded as a measure of the ‘‘dead time’’ region. As a con-
sequence of our procedure, the time-series is recasted as a set
of N consecutive points in a (2p12)-dimensional space
~whereN corresponds to the number of peaks above cutoff!
describing a Poincare´ map.

Since we are interested in characterizing the variations in
the data from peak to peak, we first subtracted the average-
peak vector from each peak array. This can be regarded as a
coordinate shift in the (2p12)-dimensional peak space
which eliminates all offsets due to the experimental setup,
leaving only the differences between peaks~plus eventual
experimental and measuring errors! as relevant information.

B. Model Poincarémap

In order to separate the most relevant components in peak
space we used a standard method known as the principal
components analysis@14,15#. It can also be regarded as a
case of biorthogonal decomposition@16# since each peak has
associated 2p12 ‘‘spatial’’ coordinates and we decompose
the peaks in terms of linearly uncorrelated ‘‘spatial modes.’’
The outer product of each peak vector is used to compute the
matrix

A5(
i51

N

v iv i
T . ~3!

A is symmetric and positive semidefinite, providing there-
fore a test for the quality of our computation: No eigenvalue
of A should be negative. Moreover, the eigenvalues ofA can
be interpreted as follows. If all vectorsv i were equal,A
would have only one nonzero eigenvalue of sizel5Nuvu2.
If we assume that all entries are built of a single vectorv i
plus a random error of sizee, we will obtain one eigenvalue

of large size and all other eigenvalues of sizee. We can in
general say that large eigenvalues contain information about
the system while small eigenvalues carry the noise and other
sources of error. The associated eigenvectors thus yield a
way to characterize relevant coordinates.

We finally proceed to project the (2p12)-dimensional
imbedding space into itsd first coordinates whered is the
imbedding dimension of the points in the Poincare´ section.
For low dimensional imbeddings~one or two! the dimension
can be usually recognized by inspection of the data set. Al-
ternatively we introduce a criterion based in the false-
neighbors method@17,18#. The procedure is as follows.

~i! Order the coordinates according to the size of the ei-
genvalues.

~ii ! Fix the size of a box as a few times the noise-to-signal
ratio,B, times the range of the first coordinate,G. In our case
we takeB50.06, however the computation is not too sensi-
tive to this choice.

~iii ! Let F( i ) be the fraction of false neighbors that can be
recognized using the firsti -coordinates and box-lengthB.
We will considerd to be the dimension of the imbedding
space ifd is the smallest integer such thatF(d) is greater
than a certain tolerance,Q ~in our caseQ50.95). In other
words, we take the imbedding dimension as the smallest
number of coordinates that allow us to resolve a 1003Q
percent of the false neighbors.

This procedure is statistical in nature and as such leaves
open the possibility of having statistically negligible regions
~‘‘measure zero’’ regions! where d1n dimensions,n.0,
are needed to describe the data~think for example of a mani-
fold in the shape of the figure eight that would require an
imbedding dimension of two according to our procedure but
requires at least three dimensions at one point!. The topo-
logical analysis does not tolerate these sorts of situations and
demands a true~proper! imbedding of the attractor. It is
therefore necessary to further check and probably fine tune
the embedding resulting from the above procedure before
performing any actual computation.

Projecting the peaks onto the eigendirections associated to
the largest eigenvalues ofA, we produce a model of the

FIG. 7. A piece of a time-series for the laser experiment.
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Poincare´ map of the system. The new coordinates are called
zi , where i labels the eigenvalues in descending order. In
our motivating examples the imbedding dimension was
either one~in one case! or two ~two cases!. The Poincare´
surface is described by the coordinatesz1 and z21z3 yield
a branched curve as the locus of the Poincare´ map.
The choice of z21z3 as second coordinate rather than
simply z2 satisfies the need of removing ‘‘measure zero’’
self-intersections of the attractor.

The identification of segments of data closely resembling
the periodic orbits was done using the method of close re-
turns@19,6#. Essentially, the idea is that if a sufficiently large
piece of the time-series is almost repeated after some inter-
val, we can consider that the points in the interval belong
to—or are close to—a periodic orbit~after finishing the orbit,
the system repeats itself!. The repetition occurs only approxi-
mately and under a limited period of time due, among other
causes, to the unstable character of the periodic orbits em-

FIG. 8. A period-7 orbit of the laser experiment.~a! The orbit on the Poincare´ surface.~b! The image of the model circle.~c! The
associated braid.
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bedded in a strange attractor. We have that if

d5
1

M (
j50

M21

uxl1 j2xk1 j u,e, ~4!

then the segment between pointsl andk is a close represen-
tative of a periodic orbit. Typicallye is a few percent of the
standard deviation of the data andM is several times the

peak width 2p11. Note that the identification of periodic
orbits is performed without reference to the imbedding or the
Poincare´ section. We first locate the periodic orbit and later
find the intersection of the orbit with the chosen Poincare´
section.

In general, one obtains many candidates for each periodic
orbit. In the applications, we have systematically chosen
those with lowestd as orbit representatives. More precisely,

FIG. 9. A period-2 and a period-3 orbits of the laser experiment.~a! The orbits on the Poincare´ surface.~b! The image of the model circle.
~c! The associated braid.
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we have applied the following recipe.
~i! We consider only data segments that begin at a peak,

thus avoiding having several copies of the same orbit shifted
in time.

~ii ! Points are interpolated. This avoids distorting the
closeness of a return with the mismatch between periods and
sampling times.

~iii ! For each initial point we find the final point that pro-
duces the smallestd. The segment is disregarded ifd.e.
This criterion avoidsn successive close returns of periodP
being confused with a periodnP.

~iv! No data segment can be used to represent more than
one orbit. In case of conflict only the orbit with the smallest
d is accepted. That criterion complements the previous one.
This is, even if the segment beginning atxi has its closest
return, sayd i,e, in the segment beginning atxi1P , we pro-
ceed to disregard$xi•••xi1P% as representative of a periodic
orbit if it has a subsegment with a close return smaller than
d i .

In Fig. 8~a! we show a period-7 orbit identified on the
Poincare´ surface.

The rest of the method is a simple procedure.~a! Draw a
circle joining the points of the candidate orbits using other
close-lying points on the Poincare´ surface.~b! Compute the
image of the circle by the model Poincare´ map.~c! Read the
braid type associated to the orbit by disentangling the image
of the circle obtained in~b!.

IV. APPLICATIONS

As an example of the identification procedure we read the
braids of a period-2 plus period-3 link, a period-7 orbit~Fig.
8!, and a period-13 orbit. The period 7 was present in three
of the studied data sets while the period 13 was present in
two data sets. In all cases the topological circle~a smooth
closed curve without self-intersections! required by the
method is obtained closing the dotted line joining the peri-
odic points with a suitable arc going from pointn to point
1.

In Fig. 9~a! we show the period-2 and period-3 orbits
displayed in the Poincare´ surface. Figure 9~b! displays the
image of the model circle by the Poincare´ map, while Fig.
9~c! shows the associated 5-threaded braid.

The associated braid can be described in terms of the
elementary generators. Recall that the process to read the
braid is just to apply the generators to the initial circle@Fig.
9~a!# until the final circle@Fig. 9~b!# is obtained. The genera-
tors are written right to left in order of application. Thebraid

word is then 2341234 where each digiti represents a gen-
erator s i . The braid is clearly reducible into a 2- and a
3-threaded subunit. Both subunits and also the whole
5-braid have only positive generators. The linking number
between the subunits is 2. The computation of the linking
number from the braid is straightforward. It amounts to one-
half of the number of signed crossings of the threads of the
3-subunit with those of the 2-subunit. Moreover, since the
braid has only positive generators all crossings have sign
11. The above result is obtained verifying that there are in
total four crossings.

This 5-threaded link is compatible with a horseshoe tem-
plate@6#. With this we mean that both orbits or equivalently
both braid types are present among the~infinitely many!
horseshoe orbits. Moreover, the linking between both orbits
in our data is also the same as the one obtained from the
horseshoe representatives.

Concerning the period-7 orbit of Fig. 8 the results are
more interesting. The braid can be read as
45623456123456 and it is irreducible, since it corresponds to
a prime-period orbit@1#. The braid also has positive genera-
tors only, and it corresponds to the horseshoe period-7 orbit
with permutation (3567421). Using 0 and 1 for the orienta-
tion preserving and orientation reversing branches of the
horseshoe template the period 7 is identified by the word
00101x1 ~‘‘ x’’ denotes either 0 or 1, since the horseshoe
orbits 0010101 and 0010111 are homotopic!. Moreover, the
braid has associated positive entropy since the exponent-sum
is 14, which is not divisible by 65721 ~actually the entropy
is 0.476818@20#!. Hence, the orbit is of pseudo-Anosov type,
which allows us to determine that the data set comes from a
chaotic system.

In Fig. 10 we present the braid including all the periodic
orbits detected in one of the data files and their word in
pictorial form.

Our last example is the period-13 orbit, which is the orbit
of the largest period among those shown in Fig. 10. In Fig.
11 we can see the attractor in the model Poincare´ section and
the construction that produces the braid name. The permuta-
tion associated to the orbit reads (5689abcd74321) ~using
hexadecimal numbering! while, with the same convention
used before, the braid reads (789abc)(456789abc)
(3456789abc)(23456789abc)(123456789abc), which is
again a horseshoe orbit with horseshoe name
00101010010x1 ~again the letterx stands for 1 or 0 since
both situations are indistinguishable in this context!.

Note that in this case there is some arbitrariness in the
way we connect points belonging to the two leaves of the
attractor. Referring to Fig. 11 we see that whether we con-
nect the points 5-6-7~beginning to count at the upper left
corner and following the lines! in this order, as 5-7-6 or as
7-5-6, is just a question of taste. Actually, if a different
choice is made the braid name will change to a conjugated
braid @9#.

In the case of the period-13, the exponent sum is
48543(1321). In order to decide on the basis of Boy-
land’s theorem whether this braid has associated a positive
topological entropy, one has to compute the 13th iteration of
the braid and determine if it is homotopic to a rotation.

FIG. 10. Pictorial representation of the braid associated to the
link of four orbits, of periods 10~a!, 13~b!, 3~c!, and 2~d!, present in
one data file.
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V. CONCLUSIONS AND FURTHER VIEWS

The association between periodic orbits of 3D systems
admitting a Poincare´ section and braid types can be per-
formed modeling the Poincare´ map directly instead of mod-
eling the flow@9#. This paper is an implementation and ex-
emplification of this result, using data sets from a laser
experiment that rendered very difficult to produce a 3D im-
bedding of the flow.

We have shown that the modeled Poincare´ map is com-

patible with a Smale horseshoe, by which we mean that all
the periodic orbit representatives extracted from the data sets
exist in the Smale horseshoe and are organized in the same
form in the laser system and in the horseshoe. This result is
consistent with previous work in laser data sets where cha-
otic motion was also associated to a horseshoe@4,21#.

The study of the experimental data sets presented in this
work has been performed trying to make use of all the infor-
mation available in the sets. This includes finding represen-

FIG. 11. Strange attractor in Poincare´ section and period-13 orbit.~a! The attractor.~b! The first image of the attractor.~c! The braid
associated to the orbit~points marked withx ando belong to the two different branches!.
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tatives of the periodic orbits without references to any par-
ticular imbedding and choosing the imbedding such that all
the temporal data sets can be reconstructed from the vari-
ables of the imbedding.

The procedure presented in this work requires finding the
image by the map of a topological circle connecting the
points belonging to the periodic orbits. For a densely
sampled~constructed! phase space linear interpolation using
sampled points is enough, as in the present case. However,
for other data systems there might be a need to use more
advanced techniques such as tesselations.

We must emphasize that the methods presented here are
suited for all maps of the two-dimensional disk (D2). The
application of the method to problems imbedded in other
two-dimensional surfaces might not be straightforward since
the description of the braids depends on the topology of the
phase space.

A final word must be devoted to the problem of imbed-
ding. Topological analysis is done on imbedded data. One
should more properly say that the analysis describesboth the
experimental systemand the imbedding@22#. More pre-
cisely, for any two imbeddings of the data that can be ex-
tended to an imbedding of a~deformed, topological! disk the
braid type of the periodic orbits will remain unchanged be-
cause of the very definitions of imbedding and braid type. It
is precisely the possibility of performing such an extension
of the imbedding that is the key of the discussion in@22#.

The method presented in this work cannot go beyond cer-
tain intrinsic restrictions. The problems basically arise be-
cause any reconstruction of a map based on finite~in size and
precision! experimental data represents an extrapolation. We
are making a hypothesis on the behavior of the map both for
the observed points and for those points~a measure-one set!
where we have no experimental information. There is also

some degree of arbitrariness in the procedure. For example,
the determination of the imbedding dimension is done on the
basis of statistical estimations, such as the false-neighbors
method we implemented in this paper. These estimations are
not sharp, in the sense that they do not give a yes or no
answer, but yield instead a measure of how meaningful a
result may be. Moreover, the estimation relies on thereason-
ability of several choices such as, e.g., the size of the parti-
tion boxes. Too big boxes have too many points inside for
any dimension. Too small boxes are in general empty or
have~occasionally! only one point.

In our particular case, similar laser systems have shown to
admit a 3D imbedding presenting horseshoe-type chaos@21#.
The fact that our results are fully compatible with this hy-
pothesis reinforces the confidence in the analysis.

Finally, we highlight that braids can be used to analyze
dynamical systems admitting a Poincare´ section in dimen-
sions higher than 3@9#. The condition is that the Poincare´
map hask22 strongly contracting directions, i.e., that its
dynamics can be essentially described by a 2D map, namely
the map on the 2D center manifold, irrespective of the di-
mensionk11>3 of the original flow. This result is of a
fundamental nature in the sense that general physical sys-
tems, regarded as ODE’s, could be of very high~and often
infinite! dimension.
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