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We discuss the topological analysis of dynamical systems represented by two-dimensional maps emphasiz-
ing the case of Poincammaps. The central result consists in the implementation of a recent presentation of
braids as deformations of circlgl. A. Natiello and H. G. Solari, J. Knot Theory Ramificatio®s511(1994)]
to the determination of braid types associated with periodic ofbjiso a global torsion Since some braids
imply positive topological entropy, the topological analysis can be regarded as a test of chaos. The method is
specially suited for experiments where the complete reconstruction of the phase space for the flow cannot be
achieved at a reasonable cost. We apply these ideas to data sets produced in a laser physics experiment for
which the reconstruction of the phase space of the flow is nearly imposs#11863-651X96)03309-0

PACS numbes): 05.45.bt, 42.65.5f, 47.20.Ky

[. INTRODUCTION the continuity and differentiability of the Poincafiest-return
map. Moreover, most properties of the flow, including the
The computation of the periodic orbits which are presentabove mentioned linking numbers, relative rotation rates, and
in an experimental data set is a central tool in assessing thepological entropy, are coded in the braid type and can be
topological behavior of the system. In the case of threeread directly on the Poincasection.
dimensional3D) systems, periodic orbit organization can be  The topological organization of the periodic orbits can be
turned into a strong tool for the analysis of data. First, theused as a test for theoretical models. Any acceptable model
presence of certain periodic orbits implies that the associatedill have to present the same topological organization of the
(2D) Poincaremap has positive topological entropy], thus  periodic orbits as the observed data. It can be shi@}that
being a relatively simple and certain test for chf®k Sec- the maps of the disk preserving(set o) periodic orbifs)
ond, the linking between periodic orbits and the way theycan be classified, allowing for change of coordinates and
rotate around each other along the flow, characterized by thdeformations, by the braid type of the oKbjt This is to say
linking number[3] and the relative rotation ratg4], are that the necessary condition for a theoretical Poinoaap of
strong indicators of the organization of the flow, since asthe disk to be acceptable as a model for a data set is to have
long as two periodic orbits exigt.e., for values of the sys- the same braid types as the data set for the periodic orbits
tem parameters away from bifurcations affecting these or“present” in the data.
bits) their linking will be invariant. Small errors in the deter-  Until now, all computations of periodic orbits required a
mination of the orbits will not alter their relative linking. good reconstruction of the flow. This reconstruction is not
These indicators can be summarized in a temglateA  always possible in practice, as in the motivating example of
template is a branched manifold containing informationthis work which is a laser with saturable absorber. Our time-
about the periodic orbits present in the attractor of the systergeries is a recording of the intensity of the laser. When the
together with their relative linking and rotation rates. Theintensity drops very close to or below the detection thresh-
experimental data can provide only a finite humber of peri-old, the experimental error renders it very difficult and even
odic orbits and a template can be induced from them usingmpossible to reconstruct the flow in that region of phase
the linking and folding information of the orbit6]. The  space. This difficulty calls for finding new ways to charac-
periodic orbits present in the system might be different fromterize periodic orbits which do not need to imbed the data set
those present in the induced template in two ways. Firstin order to produce a model flow.
there might be orbits in the template that are not present in In a previous articld9] we proved that the braid type
the system. Second, there might be orbits in the system natssociated to periodic orbits in 3D flows can be determined
present in the template since the data set may lack informatdirectly from the Poincaresection. This is particularly ap-
tion about periodic orbits from some regions of the phaseealing from the applications point of view because it sug-
space not visited by the attractor. The induced template is agests that the efforts in modeling experimental data can be
educated gues&onjectur¢ about the behavior of the sys- focused in the Poincarmgection rather than in the flow. Once
tem; its appeal comes from the ability of organizing the in-one has established by some means that a data set could be
formation in a simple, integrated, form. imbedded in three dimensions, it suffices to have a good
When a flow can be imbedded in three-dimensions and imescription of the Poincarmap in order to understand the
addition it admits a Poincarsection, its periodic orbits are topological organization of the periodic orbits hidden in the
described by their braid tydé]. The existence of a Poincare data. One does not actually need to perform the imbedding.
control section imposes strong restrictions to the flow. Conin this way, the difficulties encountered with our motivating
tinuity and differentiability of the flow reflect themselves in example led to the development of alternative and more
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powerful mathematical tools to analyze 3D flows admitting a
Poincaresection.

In this paper we review the theory associated with deter-
mining braid types associated with periodic orbits on the
Poincaresection in Sec. Il. The reader may want to move
directly to Sec. Ill, where we discuss a method to model the
Poincarefirst-return map and to analyze periodic orbits, and
use Sec. Il as a reference section. In Sec. IV we present an
application to the laser system. Conclusions and future views
are in Sec. V.

Il. THEORETICAL BACKGROUND

Using the parametrization in time we can regard periodic
orbits in 3D flows as smooth closed nonintersecting curves in
3-space. They can be described by their knot ty@, or
more interestingly by a braifl1], using explicitly the addi-
tional orbit invariant induced by the existence of a Poincare
section, namely the period. In this section we will discuss _ _ )
why periodic orbits are interesting to understand the topo- FIG. 1. (A) A period-3 orbit. The black dots denote the inter-
logical organization of a flow, what is the braid group, how it segtlon of the orblt with a control sectiofB) The braid represen-
is related to periodic orbits, and how to compute the braidiVe of the orbit
information of a periodic orbit directly from the Poincare
section. and finishing on the chosen Poincareface. Each point will

develop a “thread” along the evolution, arriving finally to
A. Why periodic orbits? some other pointamong then points of the orbit We illus-
. . . ) ..., trate this description in Fig.(B).
_O,E*F ultl_m_ate _goal IS 10 assess '.f a given data setis cha- More precisely, the threads can be parametrized by a
one. ti'ée'r'e';i';]"’g 'ng, ff%’;]‘ai t‘?g{f‘%\/";“’:q'esgﬁtgmsgi?gggh';‘vti'r‘]‘; function f:[0,1]—(R2)", wheref(t) consists ofn different
: points of the disk describing the location of the threads at

positive topological entropj2]. : . . . .
Topological entropy, intuitively, measures the way a fIOWt|met. It is clear from Fig. 1 thaf(1) is just a permutation

stretches and folds into itself by way of the time evolution. A0f 1(0) since we can tak_e them to be th? same set 9f points
minimal physical requirement is that the time evolution©" the same control sectlop. Moreover, since the orbit cannot
should be continuous and with continuous inverse. In thdntersectitself, no two entries if{t) can coincide, so we can
specific case of this papgBD flows admitting a Poincare Mmore accurately replace the image spaceXhy(R%)"—A,
section this translates into having a Poincaramp which is Where A is the great diagonal inR®)", i.e., (X1, ... Xn)
continuous and with continuous inver§ee., a homeomor- € A< Xx;=x; for somei #j. We end up describing the orbits
phism). by functionsf:[0,1]—X,, wheref(0) is a permutation of
The role of periodic orbits in this game is the following. If f(1) andn characterizes the period. Since the labeling of the
one happens to establish that a particular periodic orbit isnitial points (x,, ... X,) is arbitrary we should not distin-
present in a data set, and therefore infer that this orbit is guish the function X, ... x,)(t) from (Xp, - Xp),
possible solution of the underlying dynamical system, th&yheren—p,, is a permutation. This is achieved identifying
rate o_f stretchmg and foldlr_wg of f[he flow has to be compatihe points K, Xp) and (g, , ... X, ) for all possible
ible with the existence of this orbit, because of the continuity ermutations. ie. the s aci is fu?ther replaced b
assumptions. Intuitively, if one has certain very twisted or-P h RPN ds f P h n : P el y
bits, the whole flow has to be highly twisted. We concludeX”/S“’ whereS, stands for the permutation group wiele-
that the existence of certain periodic orbits will imply posi- ments. : . .
tive entropy and hence chaoticity. A more precise statement In order to c_hargctenze the way an orbit tangles to itself
in terms of the braid associated to a periodic orbit is givenWe ha_lve to gain independence with respect to changes of
below. coo_rdlnates that'would only change the appearance of the
orbit. Moreover, if we are to make sense of statements such
as “the orbit exists in the parameter region ” we have to
allow for continuous deformations of the orbits. Hence it
Consider a periodh orbit on a 3D flow. Its intersection makes sense to classify orbits up to homotop(@ao maps
with the Poincareection will consist oh different points on  f,g:A—B are said to be homotopic if they can be continu-
the 2D Poincaresurface. For the sake of simplicity we can ously deformed into one anothgt2].)
consider this surface to be a topological diskf A period- We can then consider the equivalence classes with respect
3 orbit is depicted in Fig. @), where the intersection of the to homotopies of the functions[0,1]—X,,/S,, where now
orbit with the Poincareection is indicated with black dots. f(1)=f(0) since we have identified points ¥y, that differ
In order to describe the orbit we can consider the evoluin a permutation. Each orbit will belong to one and only one
tion of all n points simultaneously during one period startingequivalence class, so the classes are representative of the

A

B. Periodic orbits and braids
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FIG. 2. A pictorial representation of the multiplication operation /
of the braid group.
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orbit structure. These classes are the elements obthiel
group B,, [13] also called the fundamental group FIG. 3. Braid conjugation. The first crossing on the left picture
71X, /S,). goes into the last crossing on the right picture. The direction of the
flow is downwards.
C. Braids
. . . i . . direction of the flow will be moved to the end of the word.
Figure IB) is a pictorial representation of a braid. We Hence, the same orbit can be described by different words.

can define a braid multiplication as is shown pictorially in\y/e show an example in Fig. 3. The different words are re-
Fig. 2, simply by appending one braid to the other. lated by a conjugation operation,
Braids can be described enumerating the crossings among

the n threads. Each elementary crossing is calledfrae Rwb=bLy, Rw=bLyb™1, (@)

group generatoro; [13]. Consecutive threads can cross in

two possible ways. Conventionally we cat| the crossing wherel,y, Ry, describe the words associated to the conju-

where thread goesover threadi+1. The generatorrfl gated braids, with the convention that all terms of the form

describes the alternative possibility{1 overi). It is clear oflai can be canceled out of a braid word. In the case of

that ai‘l is the inverse obr; with respect to the multiplica- Fig. 3, Ly, Ry indicate the left and right braids, respec-

tion defined above. Just by “pulling tight” the involved tively, andb=o¢ .

threads one sees thago; '=1. This pictorial description of In general we can say that braid words related by a con-

braid multiplication and inverse generators may convince thgugation convey the same information. Moreover, it can be

reader that braids actually form a group. A rigorous demonshown that conjugation is an equivalence relation, and hence

stration can be found ifi3]. it is preferable from the periodic-orbit viewpoint to work
Enumerating the minimal number of necessary generator@irectly with the equivalence classes of braids with respect to

in their order of appearance, each braid has an associate@njugation.

braid word The braids of Fig. 2 have the words

A= 0-27101, B=0,0, andC= 0201051011 where we agree E. Braids in the Poincare section

on writing the generators from right to lefhence, the top

crossing is at the right end of the wordVith this conven-

tion, group multiplication amounts to formal multiplication

of the braid words, i.eC=BA.

Braids can be described graphically directly on the Poin-
caresection, without resorting to the flow in order to “read”
the crossings of the threadl8]. In this subsection, we will

Note that although it can be useful to retain the identity ofSketCh th_e proceqlure for_ attaining this descr|pt|o_n. . .
There is one piece of information from the periodic orbits

a thread all along the braid, the numbering of the generator, at is lost when going to the Poinéaserface. In fact, the

in the braid word assumes that after each crossing the threads”~ = - R .
. association between flows and Poincéirst-return maps is
are renumbered starting from the left.

We note that the generators of the braid group satisfy tw(gnany-to—one. If the flow as a whole ha§ a glo.bal. torj.{ml,
- . - it rotates as a whole around the flowing axighich is an
constitutive relations, namely,o;,0i=0;,,0,0;.1 and . . : .
.0 = o7, when|i — j|>1. These relations also have a nice integer numk_)er times 2, t_he flrst—retur.n map remains unal-
SR : ' . . tered. We will call these integer rotationsl torsion or a
interpretation in terms of thread-diagrams and “pulling . ; 4 L }
o full twist. A flow compatible with a Poincammap is called a
tight” as above. . . . . .
suspensionA given Poincarenap admits many suspensions
which differ from each other in the number of full twists.
The full twists constitute a subgrou, of the braid group
Concerning the relation between braids and periodic orB,,. They are in fact thecenter of this group, i.e., those
bits, it is apparent that the choice of Poincaextion can elements that commute with all elementsBf [9]. Hence
alter the associated braid word. Choosing the sectiothe quotient grou,/Z, is the relevant entity to character-
“ahead” in the direction of the flow, the crossings that wereize periodic orbits of any flow having a given first-return
originally at the beginning of the wor@ccurring first in the  map. We will in the sequel refer only to this quotient group.

D. Braid conjugation
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_FIG. 4. Braids on the Poincagairface: Two circles belonging to FIG. 6. Braids on the Poincarsurface: A different starting
different homotopy classes. circle gives a conjugate braid.

¢ Inmal c1,rcle on
Poincaré Section

Circle-diagram of periodic orbit:
Image of initial circle under Poincaré map

Consider then periodic points on a Poincasection cor-
responding to a periodic orbit of a flow. We consider 1 in
the sequel. Draw a topological circle joining the points of the _
orbit with arcs on the Poincasection. There are many ways F. Braid type
to produce a circle connecting nonintersecting arcs among |f we are not going to privilege one suspension of the map
the points. One can classify all these ways by homotopyn front of another, or one Poincasection in front of an
classes. Two circles are equivalent if they can be deformedquivalent one, we will have to identify several braids with
into each other without moving the periodic points. The dif-the same orbit. Two braids will be considered equivalent, say
ferent equivalence classes label the inequivalent ways 0=, in the sense that they possibly label the same periodic

constructing circles. In Fig. 4 we show two inequivalent orbit, if they differ by a number of full twists or a conjuga-
circles on a period-4 orbit. tion,

How are these circles related to periodic orbits? Choose
one circle as a starting point. This includes choosing an or- Yy 1BzMy=y " 1Byz"=q, 2
dering of the periodic points along the circle. Now “slide”
the circle along the flow until it returns to the control section
as described in Fig. 5. It is reasonable to expect that thwherez=(o10,---0,_1) is the braid representative of a
transformed circle will contain some information related tofull twist of the braids withp strands.
the braid of the orbit. It is straightforward to verify that we have defined an
The relevant resulf9] is that the equivalence classes of equivalence relation which classifies the braids into different
circles is in one-to-one correspondence with the quotieninequivalent classes. Thbraid typesare precisely these
group between the braid group and the full torsions. classes, i.e., two braids have the same braid type if they are
Hence, we can obtain a representation of the braid gerrelated by a conjugation and a number, of full twists.
eratorsa; and further of the braids directly on the Poincare  Let us review now the form in which we associate a braid
surface. Taking Fig. @) to represent the starting poitdand  with the periodic orbits) of a map. First, we draw a circle
hence the identity brajd Fig. 4b) represents the generator connecting all the periodic points of the periodic orfsts
o,. This generator can be conceived as a “turn” where onddeing considered and take the image by the map of the circle
takes two periodic points on the Poincasarface and obtaining a new onénequivalent to the original in genejal
switches them clockwise, together with the arc joining theWe then read off the name of the braid in terms of the gen-
points. Inverse generators are represented by counterclockrators of the braid group that need to be applied to deform
wise turns. the original circle(we shall call it the identityinto its image.
Using this method, the braid of a periodic orbit can be There is clearly one degree of arbitrariness in this proce-
read directly on the Poincargection. The whole recipe is dure: the choice of original circle is absolutely arbitrary.
summarized in Fig. 5. First, draw a circle joining the pointsWhat would happen if we pick a differer{inequivalent
of the orbit in a given sequence. The image of this circle byidentity? What does the actually mean ino; ?
the Poincaremap will be a twisted circle inequivalergin The generatop; exchanges thé andi+1 points along
general to the original one. A representative of the braid of the original circle. Changing the circle is then equivalent to
the orbit can be obtained by reading the turns required t@iving a different meaning to the generator. Consider two
different choices of circle€, andC,; let « be the braid that
Tnitial circle on acting onC; producesC, and letB; be the braid associated
Poincaré Section to the map as is read from the action of the mapCon We
would like to know the relation betwees, and 3,.
If we call o; the generators as read with and3; as read
with C,, we find thats; = ao;a 1. That is, we first puC,
in the form of C4, next exchange andi+1 applying o,
. Circle-diagram of periodic orbit: and finally send back; to C,. It follows immediately that
Image of initial circle under Poincar¢ map any product of¥’s is transformed in the same form, thus
B,=apBia" L. The conclusion is that the choice of original
FIG. 5. Braids on the Poincasurface: The image of the start- Circle does not affect the braid type. This reasoning is illus-
ing circle by the Poincarenap. trated in Fig. 6.

deform the original circle into the final one.
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Now consider two choices of Poincasection,IT; and  n orbit with n a prime number is always irreduciti&]. We
IT,, such that the second lies ahead of the first along thavill focus further on this particular case.
flow. The action of the flow on the identit€, of the first The existence of certain orbits in 2D diffeomorphisms
section is the circleg8;C;. While going fromII; to I,, the  requires a high degree of stretching and folding of the do-
identity deforms taC,=dC;. Let us takeC, as the identity ~main. In particular, the existence ofpseudo-Anosowrbit
on II,. The action of the flow orC, can be described by [1] implies the existence of infinitely many other orbits and
dpB,d~1C,. Pictorially, we flow backwards fronT, onII,  of positive topological entropy.
to d"1C,=C; on II;. We act with the flow, returning to A test for positive topological entropy is, hence, to deter-
B1d~1C, on1l,, and finally we flow forward again tol,. mine if a system has a periodic orbit with a braid of pseudo-
Figure 3 was prepared having this example in mind. Anosov type. The result by Boyland states that if a braid is

Notice the parallel between the two situations describedrreducible, then the exponent-sum, i.e., the sum of the ex-
above. In both cases, the conclusion is that changing theonents of the generators associated to the braid word, can
arbitrarily chosen “identity” circle the Poincammap gener- be used as a test for entropy. If the exponent sum is not an
ates conjugated braid names, hence we read exactly the saméeger multiple ofn— 1, the braid is pseudo-Anosov. In the
braid type. negative case there is still a chancegf i.e., thenth power

of the braid, is not homotopic to a rotation, then the braid

G. Braids in higher dimensions B is of pseudo-Anosov type.

The essential geometric property that is underlying the
structure of periodic orbits of 2D maps is the fact that the
fundamental group of the punctured didR¥—{0}, i.e., the As mentioned in the Introduction, the motivating example
disk without one of its interior poinjsgs nontrivial. In sim-  of this work is time-series from a laser system. When the
pler words, closed curves can be distinguished by theiintensity recorded in the time-series drops to values very
(signed number of turns around the puncture. Curves havinglose to or below the detection threshold, the experimental
a different number of turns cannot be deformed continuouslerror renders it very difficult and even impossible to properly
into one another. Similarly, the braidsmfstrands are related reconstruct the flow in that region of phase space. One way
to the fundamental group of the disk withpunctures. out of the problem, then, is to give up the reconstruction of

Going over to higher dimensions the fundamental groupshe flow and attempt to reconstruct the Poinaasp instead.
become trivial. A famous consequence of this is the fact that A sample of a time-series is shown in Fig. 7 showing that
all knots are trivial in four or more dimensions. there are large periods of zero or very low intensity in be-

This result is of a fundamental nature in the sense thatween high-intensity peaks. Our main working hypothesis is
general physical systems are described by partial differentighat each peak can be regarded as a point on a Poincare
equations. Regarded as ODHardinary differential equa- surface of the system, and hence the time-series records how
tions), physical systems should be of very high and oftenthe system jumps from one peak to the next, i.e., how it
infinite dimension. How then is it possible that freemperi-  moves on the Poincarsurface, as dictated by the Poincare
mental resultsoriginated in a high-dimensional system one map.
obtains linked periodic orbits, an object which is character- To describe each peak we would like to use as much
istic of 3D flows? There is a simple answer to this questioninformation as possible from the part of the time-series well
when low-dimensional models can be regarded as the centabove the detection threshold, while avoiding as much as
manifold reduction of high-dimensional physical systems. possible the “dead times” between consecutive peaks. If the

A dynamical system admitting a Poincasection of di- description is successful, we will have a good model of the
mensionk>2 can in certain cases still be associated toPoincaremap instead of a poorer model of the original flow.
braids[9]. The condition is that the Poincaneap hask— 2
strongly contracting directions, i.e., that its dynamics can be A. Peak description

essentially described by a 2D map, namely the map on the . . . . .
. . . . . To identify each peak we considerconsecutive points of
2D center manifold, irrespective of the dimensioft 1>3 . L . _ ;
the time-series(in our computationsn=5) to determine

of the original flow. The fundamental group of the periodic whether there is a local maximum among those points. A

orbits of the whole system dressed with their strongly Stabl%utoff valuec disreqards maxima which have t0o low abso-
directions equals the fundamental group of the periodic ors 9

bits on the center manifold, i.e., the braid types. Proof oiJUte intensity. The peak is further representedubgoints to
these results can be found 5,9]. h each side of the local maximum. The amount of poptsas

taken as one-half of the largest interpeak distance after ig-
noring the “zero intensity” segments of the ddta., where
the intensity drops below a threshold vatyso that it can be
An important result of Boylanfll] states that foirreduc-  assumed to have reached “zero levelThis choice ofp
ible braid types there is a simple test for positive topologicalguarantees that all data points above ‘“zero intensity” will
entropy. Following KatoK?2] positive topological entropy is participate in the identification of the peatessentually with
a way of assessing that the systencligotic Let us recall some overlap The sampling interval was taken identical to
the procedure step by step. the experimental sampling. However, sampled points were
An irreducible braid type can be intuitively described asinterpolated so that the peaks coincide with thel sample
one that cannot be decomposed in smaller independent sulivoiding in this form adding one spurious dimension to the
sets. In particular, an-threaded braid describing a period- reconstructed data. Both the threshold and the cutoff were

. THE METHOD

H. Braids that imply positive entropy
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FIG. 7. A piece of a time-series for the laser experiment.

chosen a few percent above the absolute minimum of thef large size and all other eigenvalues of sizéNe can in
time-series. Typical values wepe~20,c~3%,t~0.5%. In  general say that large eigenvalues contain information about
order to have a more confident characterization of each pedke system while small eigenvalues carry the noise and other
we used a (P+ 2)-dimensional array where apart from the sources of error. The associated eigenvectors thus yield a
2p+1 consecutive points of the time series we added a “coWay to characterize relevant coordinates.
ordinate” containing the interpeak distance, which can be We finally proceed to project the f2-2)-dimensional
regarded as a measure of the “dead time” region. As a conimbedding space into itd first coordinates wherd is the
sequence of our procedure, the time-series is recasted as a §g8pedding dimension of the points in the Poincagztion.
of N consecutive points in a @-FZ)-dimensiona| space For low dimensional imbeddingﬁne or tWO the dimension
(whereN corresponds to the number of peaks above chutoffcan be usually recognized by inspection of the data set. Al-
describing a Poincarmap. ternatively we introduce a criterion based in the false-

Since we are interested in characterizing the variations if€ighbors metho@17,18. The procedure is as follows.
the data from peak to peak, we first subtracted the average- (i) Order the coordinates according to the size of the ei-
peak vector from each peak array. This can be regarded asggnvalues. ) ) )
Coordinate Sh|ft in the (ﬁ.}. 2)_dimensi0na| peak Space (||) Fix the size of a box as a few times the nOIse-tO-SIgnal
which eliminates all offsets due to the experimental setup!atio, B, times the range of the first coordinate, In our case
leaving only the differences between pedktus eventual We takeB=0.06, however the computation is not too sensi-
experimental and measuring errpes relevant information. tive to this choice.

(iii) Let F(i) be the fraction of false neighbors that can be
B. Model Poincare map recognized using the firstcoordinates and box-lengtB.
. We will considerd to be the dimension of the imbedding

In order to separate the most relevant components in peakhace ifd is the smallest integer such tha(d) is greater
space we used a s_tandard method known as the principglan a certain toleranc® (in our caseQ=0.95). In other
components analysigl4,15. It can also be regarded as a \yorgs, we take the imbedding dimension as the smallest
case of biorthogonal decompositip6] since each peak has nmper of coordinates that allow us to resolve a Q0
assomated_ g+2 “spat!al” coordinates and we d_ecompose percent of the false neighbors.
the peaks in terms of linearly uncorrelated “spatial modes.”"  Thjs procedure is statistical in nature and as such leaves
The outer product of each peak vector is used to compute thgyen the possibility of having statistically negligible regions

matrix (“measure zero” regionswhere d+n dimensions,n>0,
N are needed to describe the détank for example of a mani-
A=E UiUiT- (3) fold in Fhe s_hape _of the figure eight that would require an
i=1 imbedding dimension of two according to our procedure but
requires at least three dimensions at one poifihe topo-

A is symmetric and positive semidefinite, providing there-logical analysis does not tolerate these sorts of situations and
fore a test for the quality of our computation: No eigenvaluedemands a truéprope) imbedding of the attractor. It is
of A should be negative. Moreover, the eigenvalued ein  therefore necessary to further check and probably fine tune
be interpreted as follows. If all vectors, were equal A the embedding resulting from the above procedure before
would have only one nonzero eigenvalue of sizeN|v|2.  performing any actual computation.

If we assume that all entries are built of a single veatpr Projecting the peaks onto the eigendirections associated to
plus a random error of size, we will obtain one eigenvalue the largest eigenvalues &, we produce a model of the
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FIG. 8. A period-7 orbit of the laser experimeitg) The orbit on the Poincarsurface.(b) The image of the model circléc) The
associated braid.

Poincaremap of the system. The new coordinates are called The identification of segments of data closely resembling
z;, wherei labels the eigenvalues in descending order. Inthe periodic orbits was done using the method of close re-
our motivating examples the imbedding dimension wasurns[19,6]. Essentially, the idea is that if a sufficiently large
either one(in one casgor two (two cases The Poincare piece of the time-series is almost repeated after some inter-
surface is described by the coordinamgsandz,+z5 yield  val, we can consider that the points in the interval belong
a branched curve as the locus of the Poincamap. to—or are close to—a periodic orlgifter finishing the orbit,
The choice ofz,+z; as second coordinate rather thanthe system repeats itsgliThe repetition occurs only approxi-
simply z, satisfies the need of removing “measure zero” mately and under a limited period of time due, among other
self-intersections of the attractor. causes, to the unstable character of the periodic orbits em-
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FIG. 9. A period-2 and a period-3 orbits of the laser experim@hiThe orbits on the Poincasurface(b) The image of the model circle.
(c) The associated braid.

bedded in a strange attractor. We have that if peak width 2+ 1. Note that the identification of periodic
M_1 orbits i§ performed without reference to the imbedding or the
P 1 S X=X | <e @ Poincaresection. We first locate the periodic orbit and later
M =0 I Tk ' find the intersection of the orbit with the chosen Poincare
section.
then the segment between poihtandk is a close represen- In general, one obtains many candidates for each periodic

tative of a periodic orbit. Typically is a few percent of the orbit. In the applications, we have systematically chosen
standard deviation of the data amdl is several times the those with lowest® as orbit representatives. More precisely,
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word is then 2341234 where each digirepresents a gen-

mn_; abdbabacbababdbabab D erator ;. The braid is clearly reducible into a 2- and a
1 28 3-threaded subunit. Both subunits and also the whole

5-braid have only positive generators. The linking number
1) between the subunits is 2. The computation of the linking

ba ba Vb number from the braid is straightforward. It amounts to one-
M half of the number of signed crossings of the threads of the
3-subunit with those of the 2-subunit. Moreover, since the

braid has only positive generators all crossings have sign

FIG. 10. Pictorial representation of the braid associated to the; 1 The above result is obtained verifying that there are in
link of four orbits, of periods 1@), 13(b), 3(c), and Zd), present in total four crossings

f

one data file. This 5-threaded link is compatible with a horseshoe tem-
h lied the followi . plate[6]. With this we mean that both orbits or equivalently
we have applied the Tollowing recipe. both braid types are present among itinitely many)

(0 We_ qon5|de_r only data segments that begin at_ a p.ealﬂorseshoe orbits. Moreover, the linking between both orbits
thus avoiding having several copies of the same orbit shifted : .
in time. in our data is also thg same as the one obtained from the
(i) Points are interpolated. This avoids distorting thehorseshoe representatives.

closeness of a return with the mismatch between periods and Conceming the period-7 orbit of Fig. 8 the results are
sampling times. more interesting. The braid can be read as

duces the smalless. The segment is disregarded df> €. a prime-period orbif1]. The braid also has positive genera-
This criterion avoid: successive close returns of peried  tors only, and it corresponds to the horseshoe period-7 orbit
being confused with a periodP. with permutation (3567421). Using 0 and 1 for the orienta-
(iv) No data segment can be used to represent more thdion preserving and orientation reversing branches of the
one orbit. In case of conflict only the orbit with the smallesthorseshoe template the period 7 is identified by the word
d is accepted. That criterion complements the previous ondd010Xx1 (“x” denotes either 0 or 1, since the horseshoe
This is, even if the segment beginning>athas its closest orbits 0010101 and 0010111 are homotdphMoreover, the
return, says;<e, in the segment beginning &t », we pro-  braid has associated positive entropy since the exponent-sum
ceed to disregarf;- - - X, p} as representative of a periodic is 14, which is not divisible by & 7— 1 (actually the entropy
orbit if it has a subsegment with a close return smaller thars 0.47681§20]). Hence, the orbit is of pseudo-Anosov type,
b . which allows us to determine that the data set comes from a
In Fig. 8@ we show a period-7 orbit identified on the chaotic system.
Poincaresurface. _ _ In Fig. 10 we present the braid including all the periodic
~ The rest of the method is a simple procedueg.Draw a  qrpits detected in one of the data files and their word in
circle joining t.he points of the}candldate orbits using Otherpictorial form.
_close-lylng points on the Pomca&mrfape.(b) Compute the Our last example is the period-13 orbit, which is the orbit
gna%e of the C|rc_le bg thehmodgl_ Pbomdc_arrmp.(c)l_Rearc]i the of the largest period among those shown in Fig. 10. In Fig.
raid type associated to the orbit by disentangling the 'Ma091 we can see the attractor in the model Poinsaxion and

of the circle obtained irfb). the construction that produces the braid name. The permuta-
tion associated to the orbit reads (568@d74321) (using
IV. APPLICATIONS hexadecimal numberingwhile, with the same convention

As an example of the identification procedure we read th&iSed before, the Dbraid reads (28f)(45678%&bc)
braids of a period-2 plus period-3 link, a period-7 oiilg.  (345678@bc)(2345678@bc)(123456788bc), which is
8), and a period-13 orbit. The period 7 was present in thre@dain @ horseshoe orbit with horseshoe name
of the studied data sets while the period 13 was present id010101001%1 (again the lettex stands for 1 or O since
two data sets. In all cases the topological cir@esmooth  both situations are indistinguishable in this context
closed curve without self-intersectionsequired by the Note that in this case there is some arbitrariness in the
method is obtained closing the dotted line joining the peri-way we connect points belonging to the two leaves of the
odic points with a suitable arc going from pointto point  attractor. Referring to Fig. 11 we see that whether we con-
1. nect the points 5-6-7beginning to count at the upper left

In Fig. %@ we show the period-2 and period-3 orbits corner and following the lingsin this order, as 5-7-6 or as
displayed in the Poincarsurface. Figure @) displays the 7-5-6, is just a question of taste. Actually, if a different
image of the model circle by the Poincamap, while Fig. choice is made the braid name will change to a conjugated
9(c) shows the associated 5-threaded braid. braid[9].

The associated braid can be described in terms of the In the case of the period-13, the exponent sum is
elementary generators. Recall that the process to read td8=4X(13—1). In order to decide on the basis of Boy-
braid is just to apply the generators to the initial cirfiég.  land’s theorem whether this braid has associated a positive
9(a)] until the final circle[Fig. Ab)] is obtained. The genera- topological entropy, one has to compute the 13th iteration of
tors are written right to left in order of application. Theaid  the braid and determine if it is homotopic to a rotation.
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FIG. 11. Strange attractor in Poincasection and period-13 orbita) The attractor(b) The first image of the attractotc) The braid
associated to the orb{points marked withx and o belong to the two different branches

V. CONCLUSIONS AND FURTHER VIEWS patible with a Smale horseshoe, by which we mean that all

éhe periodic orbit representatives extracted from the data sets
admitting a Poincaresection and braid types can be per- exist In the Smale horseshoe'and are organized n the same
formed modeling the Poincaraap directly instead of mod- form'ln the Igser sy;tem and in the horseshoe. This result is

eling the flow[9]. This paper is an implementation and ex- consistent with previous wqu in laser data sets where cha-

emplification of this result, using data sets from a lasertic motion was also associated to a horsegdo21].

experiment that rendered very difficult to produce a 3D im-  The study of the experimental data sets presented in this
bedding of the flow. work has been performed trying to make use of all the infor-

We have shown that the modeled Poircarap is com- mation available in the sets. This includes finding represen-

The association between periodic orbits of 3D system
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tatives of the periodic orbits without references to any parsome degree of arbitrariness in the procedure. For example,
ticular imbedding and choosing the imbedding such that althe determination of the imbedding dimension is done on the
the temporal data sets can be reconstructed from the varbasis of statistical estimations, such as the false-neighbors
ables of the imbedding. method we implemented in this paper. These estimations are

The procedure presented in this work requires finding thewot sharp, in the sense that they do not give a yes or no
image by the map of a topological circle connecting theanswer, but yield instead a measure of how meaningful a
points belonging to the periodic orbits. For a denselyresult may be. Moreover, the estimation relies onrdason-
sampled(constructeflphase space linear interpolation using ability of several choices such as, e.g., the size of the parti-
sampled points is enough, as in the present case. Howevdion boxes. Too big boxes have too many points inside for
for other data systems there might be a need to use mommy dimension. Too small boxes are in general empty or
advanced techniques such as tesselations. have (occasionally only one point.

We must emphasize that the methods presented here are In our particular case, similar laser systems have shown to
suited for all maps of the two-dimensional diskR9). The admit a 3D imbedding presenting horseshoe-type cf2is
application of the method to problems imbedded in otherThe fact that our results are fully compatible with this hy-
two-dimensional surfaces might not be straightforward sincgothesis reinforces the confidence in the analysis.
the description of the braids depends on the topology of the Finally, we highlight that braids can be used to analyze
phase space. dynamical systems admitting a Poincaection in dimen-

A final word must be devoted to the problem of imbed- sions higher than $9]. The condition is that the Poincare
ding. Topological analysis is done on imbedded data. Onenap hask—2 strongly contracting directions, i.e., that its
should more properly say that the analysis desciimsthe  dynamics can be essentially described by a 2D map, namely
experimental systenmand the imbedding[22]. More pre- the map on the 2D center manifold, irrespective of the di-
cisely, for any two imbeddings of the data that can be eximensionk+1=3 of the original flow. This result is of a
tended to an imbedding of @eformed, topologicaldisk the  fundamental nature in the sense that general physical sys-
braid type of the periodic orbits will remain unchanged be-tems, regarded as ODE's, could be of very highd often
cause of the very definitions of imbedding and braid type. ltinfinite) dimension.
is precisely the possibility of performing such an extension
of the imbedding that is the key of the discussiori2a].
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